
Using I2C with Java leJOS

Juan Antonio Breña Moral Page 1 of 17 www.juanantonio.info

Using I2C with Java leJOS

Versión 0.1

Juan Antonio Breña Moral

24-ago-08

Using I2C with Java leJOS

Juan Antonio Breña Moral Page 2 of 17 www.juanantonio.info

Index

1.- Introduction ... 4

1.1.- Goals... 4
1.1.1.- About this document...4

1.2.- LeJOS Project ... 4

1.3.- NXT Brick.. 5
1.3.1.- NXT Sensors used in the eBook...6

1.4.- About the author ... 8

2.- I2C Protocol ... 9

2.1.- Introduction... 9

2.2.- I2C Bus terminology ... 10

2.3.- Terminology for bus transfer... 10

3.- LeJOS and I2C .. 11

3.1.- LeJOS API... 11

3.2.- I2C Examples with leJOS... 12

3.3.- Migrating code I2C from others platforms... 13
3.3.1.- Migrating I2C Code from RobotC to Java leJOS ...13
3.3.2.- Migrating I2C Code from NXC to Java leJOS ...14

Using I2C with Java leJOS

Juan Antonio Breña Moral Page 3 of 17 www.juanantonio.info

Revision History

Name Date Reason For Changes Version

Juan Antonio Breña Moral 24/08/2008 First publication 0.1

Using I2C with Java leJOS

Juan Antonio Breña Moral Page 4 of 17 www.juanantonio.info

1.- Introduction

1.1.- Goals

Many developers around the world choose leJOS, Java for Lego Mindstorm, as the
main platform to develop robots with NXT Lego Mindstorm. I consider that this
eBook will help leJOS community, Lego Mindstorm community, Robot’s developers
and Java fans to develop better software.

Robotics will be very important for the humanity in the next 10 years and this
eBook is an effort to help in this way.

Many people spend several hours in their robotics projects with problems with wires
& electronics, protocols and problems with programming languages, Lego
Mindstorm is easy and Java/leJOS is an excellent platform to demonstrate your
software engineering skills to develop better robots. NXT Brick is the easiest way to
enter in the robotics world and leJOS, the best platform in the moment to use
software engineering ideas.

Enjoy, Learn, Contact with me to improve the eBook and share your ideas.
Download latest eBook release here: http://juanantonio.info/jab_cms.php?id=206

Juan Antonio Breña Moral.
www.juanantonio.info

1.1.1.- About this document

This document has been written to explain how to discover I2C protocol and how to
use with your Java leJOS projects

1.2.- LeJOS Project

LeJOS is Sourceforge project created to develop a technological infrastructure to
develop software into Lego Mindstorm Products using Java technology.

Currently leJOS has opened the following research lines:

1. NXT Technology
a. NXJ
b. LeJOS PC API
c. iCommand

2. RCX Technology
a. leJOS for RCX

LeJOS project’s audience has increased. Currently more than 500 people visit the
website every day.

Using I2C with Java leJOS

Juan Antonio Breña Moral Page 5 of 17 www.juanantonio.info

This eBook will focus in NXT technology with NXJ using a Windows Environment to
develop software.

1.3.- NXT Brick

The NXT is the brain of a MINDSTORMS robot. It’s an intelligent, computer-
controlled LEGO brick that lets a MINDSTORMS robot come alive and perform
different operations.

Motor ports

The NXT has three output ports for attaching motors - Ports A, B and C

Sensor ports

The NXT has four input ports for attaching sensors - Ports 1, 2, 3 and 4.

USB port

Connect a USB cable to the USB port and download programs from your computer
to the NXT (or upload data from the robot to your computer). You can also use the
wireless Bluetooth connection for uploading and downloading.

Loudspeaker

Make a program with real sounds and listen to them when you run the program

NXT Buttons

Orange button: On/Enter /Run
Light grey arrows: Used for moving left and right in the NXT menu

Using I2C with Java leJOS

Juan Antonio Breña Moral Page 6 of 17 www.juanantonio.info

Dark grey button: Clear/Go back

NXT Display

Your NXT comes with many display features - see the MINDSTORMS NXT Users
Guide that comes with your NXT kit for specific information on display icons and
options

Technical specifications

• 32-bit ARM7 microcontroller
• 256 Kbytes FLASH, 64 Kbytes RAM
• 8-bit AVR microcontroller
• 4 Kbytes FLASH, 512 Byte RAM
• Bluetooth wireless communication (Bluetooth Class II V2.0 compliant)
• USB full speed port
• 4 input ports, 6-wire cable digital platform (One port includes a IEC 61158

Type 4/EN 50 170 compliant expansion port for future use)
• 3 output ports, 6-wire cable digital platform
• 100 x 64 pixel LCD graphical display
• Loudspeaker - 8 kHz sound quality. Sound channel with 8-bit resolution and

2-16 KHz sample rate.
• Power source: 6 AA batteries

1.3.1.- NXT Sensors used in the eBook

NXT Sensors used in the document are the following:

• NXT Motor
• Ultrasonic Sensor
• Compass Sensor
• NXTCam
• Tilt Sensor
• NXTCam
• NXTe

NXT Motor

Ultrasonic Sensor

Using I2C with Java leJOS

Juan Antonio Breña Moral Page 7 of 17 www.juanantonio.info

Compass Sensor

Tilt Sensor

NXTCam

NXTe

Using I2C with Java leJOS

Juan Antonio Breña Moral Page 8 of 17 www.juanantonio.info

1.4.- About the author

Juan Antonio Breña Moral has collaborated in leJOS Research team
since 2006. He works in Europe leading Marketing, Engineering and IT
projects for middle and large customers in several markets as
Defence, Telecommunications, Pharmaceutics, Energy, Automobile,
Construction, Insurance and Internet.

Further information:
www.juanantonio.info
www.esmeta.es

Using I2C with Java leJOS

Juan Antonio Breña Moral Page 9 of 17 www.juanantonio.info

2.- I2C Protocol

2.1.- Introduction

I2C (Inter-Integrated Circuit) is a multi-master serial
computer bus invented by Philips that is used to attach
low-speed peripherals to a motherboard, embedded
system, or cellphone.

I2C uses only two bidirectional open-drain lines, Serial
Data (SDA) and Serial Clock (SCL), pulled up with
resistors.

Every device hooked up to the bus has its own unique
address.

The bus has two roles for nodes: master and slave:

• Master node: node that issues the clock and addresses slaves
• Slave node: node that receives the clock line and address.

In NXT world the I2C Diagrama should be the following:

There are four potential modes of operation for a given bus device, although most
devices only use a single role and its two modes:

• Master transmit: master node is sending data to a slave
• Master receive: master node is receiving data from a slave
• Slave transmit: slave node is sending data to a master
• Slave receive: slave node is receiving data from the master

Using I2C with Java leJOS

Juan Antonio Breña Moral Page 10 of 17 www.juanantonio.info

2.2.- I2C Bus terminology

The terminology used when you work with I2C is the following:

• Transmitter: The device that sends data to the bus. A transmitter can
either be a device that puts data on the bus on its own accord (a 'master-
transmitter'), or in response to a request from the master (a 'slave-
transmitter').

• Receiver: the device that receives data from the bus. A receiver can either
be a device that receives data on its own request (a 'master-receiver), or in
response to a request from the master (a 'slave-receiver).

• Master: the component that initializes a transfer (Start command),
generates the clock (SCL) signal and terminates the transfer (Stop
command). A master can be either a transmitter or a receiver.

• Slave: the device addressed by the master. A slave can be either receiver or
transmitter.

• Multi-master: the ability for more than one master to co-exist on the bus
at the same time without collision or data loss. Typically "bit-banged"
software implemented masters are not multi-master capable. Parallel to I²C
bus controllers provide an easy way to add a multi-master hardware I²C
port to DSPs and ASICs.

• Arbitration: the prearranged procedure that authorizes only one master at
a time to take control of the bus.

• Synchronization - the prearranged procedure that synchronizes the clock
signals provided by two or more masters.

• SDA: data signal line (Serial DAta)
• SCL: clock signal line (Serial CLock)

2.3.- Terminology for bus transfer

• F (FREE): the bus is free or idle; the data line SDA and the SCL clock are

both in the high state.
• S (START) or R (RESTART): data transfer begins with a Start condition.

The level of the SDA data line changes from high to low, while the SCL clock
line remains high. When this occurs, the bus becomes 'busy'.

• C (CHANGE): while the SCL clock line is low, the data bit to be transferred
can be applied to the SDA data line by a transmitter. During this time, SDA
may change its state, as long as the SCL line remains low.

• D (DATA): a high or low bit of information on the SDA data line is valid
during the high level of the SCL clock line. This level must be kept stable
during the entire time that the clock remains high to avoid misinterpretation
as a Start or Stop condition.

• P (STOP): data transfer is terminated by a Stop condition. This occurs when
the level on the SDA data line passes from the low state to the high state,
while the SCL clock line remains high. When the data transfer has been
terminated, the bus is free once again.

Using I2C with Java leJOS

Juan Antonio Breña Moral Page 11 of 17 www.juanantonio.info

3.- LeJOS and I2C

3.1.- LeJOS API

LeJOS project supports I2C devices connected to NXT brick. Every object which
uses I2C protocol inherates from I2CSensor

The NXT devices which use I2C are:

• ColorSensor
• CompassSensor
• IRSeeker
• NXTe
• NXTCam
• OpticalDistanceSensor
• PSPNXController
• RCXLink
• RCXMotorMultiplexer
• RCXSensorMultiplexer
• TiltSensor
• UltrasonicSensor

The class I2CSensor has the following I2C methods:

• setAddress
• sendData
• getData

Further information about leJOS API here:
http://lejos.sourceforge.net/nxt/nxj/api/index.html

When it is necessary to write a class to manage a new leJOS device the question to
do are:

Using I2C with Java leJOS

Juan Antonio Breña Moral Page 12 of 17 www.juanantonio.info

• What is the I2C address to write and read data?
• What is the list of I2C registers to write and read data?
• How to interpret the values from I2C registers?

3.2.- I2C Examples with leJOS

To explain the concepts, I will use a NXT I2C Device, Mindsensors NXTServo. This
device has been developed to manage RC Servos.

If we want to read the battery connected to that device, it is necessary to know the
following parameters:

1. NXTServo I2C Address: 0xb0
2. NXTServo I2C Register to read battery level: 0x41

Now I will write a simple example which read the battery from NXTServo:

public class NXTServoTest{

 public static void main(String[] args){
 DebugMessages dm = new DebugMessages();
 dm.setLCDLines(6);
 dm.echo("Testing NXT Servo");

 MSC msc = new MSC(SensorPort.S1);
 msc.addServo(1,"Mindsensors RC Servo 9Gr");

 while(!Button.ESCAPE.isPressed()){
 dm.echo(msc.getBattery());
 }
 dm.echo("Test finished");
 }
}

The class MSC, Mindsensor Servo Controller, manages until 8 RC Servos. I will
show 2 internal methods in the class MSC:

The constructor:

public static final byte NXTSERVO_ADDRESS = (byte)0xb0;

public MSC(SensorPort port){
 super(port);
 port.setType(TYPE_LOWSPEED_9V);
 this.setAddress(MSC.NXTSERVO_ADDRESS);

 this.portConnected = port;
 arrServo = new ArrayList();
}

If you observe the code, all I2C operation will use the address 0xb0

The method getBattery:

public int getBattery(){
 int I2C_Response;
 byte[] bufReadResponse;

Using I2C with Java leJOS

Juan Antonio Breña Moral Page 13 of 17 www.juanantonio.info

 bufReadResponse = new byte[8];
 byte kSc8_Vbatt = 0x41;//The I2C Register to read the battery
 I2C_Response = this.getData(kSc8_Vbatt, bufReadResponse, 1);
 return(37*(0x00FF & bufReadResponse[0]));// 37 is calculated
from
 //supply from NXT =4700 mv /128
}

In this example we read the I2C register 0x41 which store battery level. Every I2C
action has a response. If the response is 0 then it is a success if the result is not 0
then it was a failure. Besides when you read a I2C register, you have to use a
buffer, in this case bufReadResponse.

3.3.- Migrating code I2C from others platforms

When you develop NXT software, it is a usual that you get ideas from others
developers who likes others platforms. In this section I will explain how to migrate
I2C RobotC and NXC code

3.3.1.- Migrating I2C Code from RobotC to Java leJOS

RobotC has the following I2C functions to read and write registers.

Function Description
sendI2CMsg(nPort,
sendMsg, nReplySize);

Send an I2C message on the specified sensor port.

nI2CBytesReady[] This array contains the number of bytes available from a I2C read
on the specified sensor port.

readI2CReply(nPort,
replyBytes,
nBytesToRead);

Retrieve the reply bytes from an I2C message.

nI2CStatus[] Currents status of the selected sensor I2C link.
nI2CRetries This variable allows changing the number of message retries.

The default action tries to send every I2C message three times
before giving up and reporting an error. Unfortunately, this many
retries can easily mask any faults that can exist.

SensorType[] This array is used to configure a sensor for I2C operation. It also
indicates whether ‘standard’ or ‘fast’ transmission should be used
with this sensor.

Now I will show an example with the same method getBattery:

/*===================================
**
** Read the battery voltage data from
** NXTServo module (in mili-volts)
**
===================================*/
int Get_Batt_V()
{
 byte sc8Msg[5];
 const int kMsgSize = 0;
 const int kSc8Address = 1;
 const int kReadAddress = 2;
 byte replyMsg[2];

Using I2C with Java leJOS

Juan Antonio Breña Moral Page 14 of 17 www.juanantonio.info

 // Build the I2C message
 sc8Msg[kMsgSize] = 2;
 sc8Msg[kSc8Address] = kSc8ID ;
 sc8Msg[kReadAddress] = kSc8_Vbatt ;

 while (nI2CStatus[kSc8Port] == STAT_COMM_PENDING);
 {
 // Wait for I2C bus to be ready
 }
 // when the I2C bus is ready, send the message you built
 sendI2CMsg(kSc8Port, sc8Msg[0], 1);

 while (nI2CStatus[kSc8Port] == STAT_COMM_PENDING);
 {
 // Wait for I2C bus to be ready
 }
 // when the I2C bus is ready, send the message you built
 readI2CReply(kSc8Port, replyMsg[0], 1);

 return(37*(0x00FF & replyMsg[0])); // 37 is calculated from

 //supply from NXT =4700 mv /128
}

Now the migration to Java leJOS:

/**
 * Read the battery voltage data from
 * NXTServo module (in mili-volts)
 *
 * @return
 */
public int getBattery(){
 int I2C_Response;
 byte[] bufReadResponse;
 bufReadResponse = new byte[8];
 byte kSc8_Vbatt = 0x41;//The I2C Register to read the battery
 I2C_Response = this.getData(kSc8_Vbatt, bufReadResponse, 1);
 return(37*(0x00FF & bufReadResponse[0]));// 37 is calculated
from
 //supply from NXT =4700 mv /128
}

3.3.2.- Migrating I2C Code from NXC to Java leJOS

NXC Programming Languaje has a set of functions to manage I2C:

Function Description
LowspeedWrite(port,
returnlen, buffer)

This method starts a transaction to write the bytes
contained in the array buffer to the I2C device on the
specified port. It also tells the I2C device the number of
bytes that should be included in the response. The
maximum number of bytes that can be written or read is
16. The port may be specified using a constant (e.g.,
IN_1, IN_2, IN_3, or IN_4) or a variable. Constants
should be used where possible to avoid blocking access
to I2C devices on other ports by code running on other

Using I2C with Java leJOS

Juan Antonio Breña Moral Page 15 of 17 www.juanantonio.info

threads.

x = LowspeedWrite(IN_1, 1, inbuffer);

LowspeedStatus(port, out
bytesready)

This method checks the status of the I2C communication
on the specified port. If the last operation on this port was
a successful LowspeedWrite call that requested response
data from the device then bytesready will be set to the
number of bytes in the internal read buffer. The port may
be specified using a constant (e.g., IN_1, IN_2, IN_3, or
IN_4) or a variable. Constants should be used where
possible to avoid blocking access to I2C devices on other
ports by code running on other threads.

If the return value is 0 then the last operation did not
cause any errors. Avoid calls to LowspeedRead or
LowspeedWrite while LowspeedStatus returns
STAT_COMM_PENDING.

x = LowspeedStatus(IN_1, nRead);

LowspeedCheckStatus(port) This method checks the status of the I2C communication
on the specified port. The port may be specified using a
constant (e.g., IN_1, IN_2, IN_3, or IN_4) or a variable.
Constants should be used where possible to avoid
blocking access to I2C devices on other ports by code
running on other threads. If the return value is 0 then the
last operation did not cause any errors. Avoid calls to
LowspeedRead or LowspeedWrite while
LowspeedStatus returns STAT_COMM_PENDING.

x = LowspeedCheckStatus(IN_1);

LowspeedBytesReady(port) This method checks the status of the I2C communication
on the specified port. If the last operation on this port was
a successful LowspeedWrite call that requested response
data from the device then the return value will be the
number of bytes in the internal read buffer. The port may
be specified using a constant (e.g., IN_1, IN_2, IN_3, or
IN_4) or a variable. Constants should be used where
possible to avoid blocking access to I2C devices on other
ports by code running on other threads.

x = LowspeedBytesReady(IN_1);

LowspeedRead(port,
buflen, out buffer)

Read the specified number of bytes from the I2C device
on the specified port and store the bytes read in the array
buffer provided. The maximum number of bytes that
can be written or read is 16. The port may be specified
using a constant (e.g., IN_1, IN_2, IN_3, or IN_4) or a
variable. Constants should be used where possible to
avoid blocking access to I2C devices on other ports by
code running on other threads. If the return value is
negative then the output buffer will be empty.

Using I2C with Java leJOS

Juan Antonio Breña Moral Page 16 of 17 www.juanantonio.info

x = LowspeedRead(IN_1, 1, outbuffer);

I2CWrite(port, returnlen,
buffer)

This is an alias for LowspeedWrite.

x = I2CWrite(IN_1, 1, inbuffer);

I2CStatus(port, out
bytesready)

This is an alias for LowspeedStatus.

x = I2CStatus(IN_1, nRead);

I2CCheckStatus(port) This is an alias for LowspeedCheckStatus.

x = I2CCheckStatus(IN_1);

I2CBytesReady(port) This is an alias for LowspeedBytesReady.

x = I2CBytesReady(IN_1);

I2CRead(port, buflen, out
buffer)

This is an alias for LowspeedRead.

x = I2CRead(IN_1, 1, outbuffer);

I2CBytes(port, inbuf, in/out
count, out outbuf)

This method writes the bytes contained in the input
buffer (inbuf) to the I2C device on the specified port,
checks for the specified number of bytes to be ready for
reading, and then tries to read the specified number
(count) of bytes from the I2C device into the output
buffer (outbuf). The port may be specified using a
constant (e.g., IN_1, IN_2, IN_3, or IN_4) or a variable.
Returns true or false indicating whether the I2C read
process succeeded or failed. This is a higher-level
wrapper around the three main I2C functions. It also
maintainsa "last good read" buffer and returns values
from that buffer if the I2C communication transaction
fails.

x = I2CBytes(IN_4, writebuf, cnt, readbuf);

To explain the concepts, will show an example from Lattebox NXTe which has leJOS
and NXC support:

byte bufConfigureSPI[] = {0x50, 0xF0, 0x0C};

void LowspeedWait()
{
 while(true){
 if (LowspeedCheckStatus(IN_3) == NO_ERR) break;
 }
}

void nxt_init()
{
 ResetSensor(IN_3);
 Wait(100);
 SetSensorType(IN_3, IN_TYPE_LOWSPEED);
 SetSensorMode(IN_3, IN_MODE_RAW);
 ResetSensor(IN_3);
 Wait(100);

Using I2C with Java leJOS

Juan Antonio Breña Moral Page 17 of 17 www.juanantonio.info

 LowspeedWait();
 LowspeedWrite(IN_3,0,bufConfigureSPI);
 LowspeedWait();

}

public static final byte NXTE_ADDRESS = 0x28;
private final byte REGISTER_IIC = (byte)0xF0;//NXTe IIC address

/**
 * Constructor
 *
 * @param port
 */
public NXTe(SensorPort port){
 super(port);

 port.setType(TYPE_LOWSPEED_9V);
 port.setMode(MODE_RAW);

 portConnected = port;

 arrLSC = new ArrayList();

 this.setAddress((int) NXTE_ADDRESS);
 int I2C_Response;
 I2C_Response = this.sendData((int)this.REGISTER_IIC,
(byte)0x0c);
}

